Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations.
نویسندگان
چکیده
The recently described respiratory strain Saccharomyces cerevisiae KOY.TM6*P is, to our knowledge, the only reported strain of S. cerevisiae which completely redirects the flux of glucose from ethanol fermentation to respiration, even at high external glucose concentrations (27). In the KOY.TM6*P strain, portions of the genes encoding the predominant hexose transporter proteins, Hxt1 and Hxt7, were fused within the regions encoding transmembrane (TM) domain 6. The resulting chimeric gene, TM6*, encoded a chimera composed of the amino-terminal half of Hxt1 and the carboxy-terminal half of Hxt7. It was subsequently integrated into the genome of an hxt null strain. In this study, we have demonstrated the transferability of this respiratory phenotype to the V5 hxt1-7Delta strain, a derivative of a strain used in enology. We also show by using this mutant that it is not necessary to transform a complete hxt null strain with the TM6* construct to obtain a non-ethanol-producing phenotype. The resulting V5.TM6*P strain, obtained by transformation of the V5 hxt1-7Delta strain with the TM6* chimeric gene, produced only minor amounts of ethanol when cultured on external glucose concentrations as high as 5%. Despite the fact that glucose flux was reduced to 30% in the V5.TM6*P strain compared with that of its parental strain, the V5.TM6*P strain produced biomass at a specific rate as high as 85% that of the V5 wild-type strain. Even more relevant for the potential use of such a strain for the production of heterologous proteins and also of low-alcohol beverages is the observation that the biomass yield increased 50% with the mutant compared to its parental strain.
منابع مشابه
APPLIED MICROBIAL AND CELL PHYSIOLOGY Reduction of volatile acidity of wines by selected yeast strains
Herein, we isolate and characterize wine yeasts with the ability to reduce volatile acidity of wines using a refermentation process, which consists in mixing the acidic wine with freshly crushed grapes or musts or, alternatively, in the incubation with the residual marc. From a set of 135 yeast isolates, four strains revealed the ability to use glucose and acetic acid simultaneously. Three of t...
متن کاملMetabolic engineering of malolactic wine yeast.
Malolactic fermentation is essential for the deacidification of high acid grape must. We have constructed a genetically stable industrial strain of Saccharomyces cerevisiae by integrating a linear cassette containing the Schizosaccharomyces pombe malate permease gene (mae1) and the Oenococcus oeni malolactic gene (mleA) under control of the S. cerevisiae PGK1 promoter and terminator sequences i...
متن کاملCharacterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملBehaviour of Kloeckera apiculata Flocculent Strain in Coculture with Saccharomyces cerevisiae
The behaviour of the flocculent Kloeckera apiculata strain in coculture with the nonflocculent Saccharomyces cerevisiae strain, both yeasts isolated from wine, has been analyzed. Pure culture of Kloeckera apiculata (apiculate yeast) exhibits 75 % flocculation in the yeast extract/peptone/glucose (containing 20 g/L of glucose, YPG20) medium after 24-hour incubation at 28 °C. This yeast expresses...
متن کاملGenomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation
Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 10 شماره
صفحات -
تاریخ انتشار 2005